Problem Solving

- state space
 - graph whose nodes correspond to problem situations
- problem is reduced to finding a path in this graph
- blocks problem

 A
 B

Problem Solving

- can only move one block at a time
- block can be grasped only when top is clear
- block put on table or other block
- must find sequence of moves to satisfy the requirements
- problem is an exploration of alternatives
 - initially, one alternative - move C to table
 - then three alternatives - A on table, A on C or C on A

Problem Solving

- problem shows two concepts
 - problem situations
 - legal moves transforming problem situations into other situations
- these together form a directed graph - state space
 - nodes of a state space graph correspond to problem situation
 - arcs correspond to legal transitions between spaces
- finding a solution is equiv to finding a path from the initial state to the final (goal state)

Problem Solving

- can represent the 8 puzzle in a similar fashion
 - 8 tiles in a 9 square grid
 - given this starting point, draw a state space graph

Problem Solving

- useful for many practical problems
 - towers of hanoi
 - travelling salesman
 - practical optimisation problem
 - find shortest route from starting city and visit all cities
 - cannot visit city more than once (Except the start city which is the end point as well)
 - farmer, goose, fox and grain
 - boat only holds the farmer and one other
 - protect the grain from the goose from the fox
Problem Solving

- state space - defines the rules of the game
- nodes - situations in the state space
- arcs - legal moves between nodes
- can attach cost to moves
 - some blocks are harder to move than others
 - distance between towns
- with costs
 - problem becomes one interested in minimum cost

Problem Solving

- state space in Prolog
- \(s(X,Y) \)
 - true if there is a legal move in the state space from a node \(X \) to a node \(Y \)
 - \(Y \) is a successor of \(X \)
 - with costs, add a third argument
 - \(s(X,Y,Cost) \)
 - relation can be represented in the program explicitly by a set of facts
 - in most real problems, this is not feasible

Problem Solving

- \(s(X,Y) \)
 - would be defined implicitly by stating the rules for computing successor nodes
- how are nodes represented
 - compact enabling efficient execution of operations
 - evaluation of successor relation and associated costs
- back to the blocks
 - can represent the problem situation (node) as a list of stacks
 - each stack is a list of blocks

Problem Solving

- initial situation
 - \([c,a,b],[],[]\)
 - the list of blocks is ordered so that top block is at start of list
- goal is any arrangement with the ordered stack of all the blocks - three possibilities
 - \([a,b,c],[[],[]]\)
 - \([[],[a,b,c],[[]]\]
 - \([[],[],[a,b,c]]\)

Problem Solving

- successor relation
 - Situation 2 is a success or Situation 1 if there are two stacks (Stack 1 and Stack 2) in Situation 1 and the top block of Stack 1 can be moved to Stack 2
- in prolog
 \[
 s(Stacks, [Stack1, [Top|Stack2] | OtherStacks]) :-
 del([Top|Stack1], Stacks, Stacks1),
 del(Stack2, Stacks1, OtherStacks).
 \]

Problem Solving

- goal condition
 - goal(Situation):- member([a,b,c],Situation)
- program search algorithms as a relation
 - solve(Start, Solution)
 - Start is the start node in state space
 - Solution is a path between Start and any goal node
 - solve([c,a,b], [], []). Solution
Depth First Search

- to find a solution path, Sol from a given node N to some goal node
 - if N is a goal node, then Sol = [N]
 - if there is a successor node N1, of N, such that there is a path Sol1 from N1 to the goal node, then Sol = [N|Sol1]
- translates to Prolog

\[
\text{solve}(N, [N]) :- \text{goal}(N).
\]
\[
\text{solve}(N, [N|Sol1]) :- \text{successor}(N, N1), \text{solve}(N1, Sol1).
\]

Depth First Search

- order in which alternatives are explored
- when presented with a choice of nodes, it chooses the one furthest from the start node
- searches down the tree first
- works well in many situations
- is simple to program due to the recursive nature
 - 8 queens is an example of DFS
- alternative solutions found through backtracking

Depth First Search

- many ways in which DFS can run into trouble
 - adding an extra arc from h to d will result in infinite loop for search
 - solution is to add a Path variable to detect where we have been
 - any node in the path from the start node to the current node should not be considered again
 - Path variable serves two purposes
 - prevent infinite loops, or second visits
 - build a solution path

Depth First Search

- other problem
 - many state spaces are infinite
 - DFS may miss a goal node and proceed along an infinite branch
 - then explores here without ever getting to the goal
- to overcome this, can add a maximum depth of search
 - limits the depth
 - on every recursion, decrease the maxdepth, but never let it get negative (ie stop going down when zero)

Depth First Search

- iterative deepening
 - varying the depth of the search to avoid the problems of setting limit too low or too high
 - can start with low search, increase to larger values until solution found
- write a depth first strategy
Breadth First Search

- chooses to visit nodes closest to start node first
- search across instead of down
- not as easy to program
 - have to maintain set of alternative candidates
 - will continually grow
 - also need to maintain the Path list

Searching to find path \([a, b, e, j]\) will find \([a, c, f]\) first

Breadth First Search

- outline for search
 - if head of first path is goal node, then this path is a solution
 - otherwise, remove first path from the candidate set and generate the set of all possible one-step extensions to this path
 - add this extension at the end of the candidate set and execute BFS on this updated set
- initial candidate \([a]\)
- generate extensions \([b, a], [c, a]\)

Breadth First Search

- remove path \([b, a]\) and generate extensions
 - \([d, b, a], [e, b, a]\)
- add these back
 - \([c, a], [d, b, a], [e, b, a]\)
- remove \([c, a]\) and generate extensions
 - \([d, b, a], [e, b, a], [f, c, a], [g, c, a]\)
- after removing and extending \([d, b, a]\) and \([e, b, a]\) get
 - \([f, c, a], [g, c, a], [h, d, b, a], [i, e, b, a], [j, e, b, a]\)

Breadth First Search

- path \([f, c, a]\) has goal node \(f\)
 - path returned as solution
- write a breadth first search
- consider the differences between DFS and BFS
 - which will give the shortest solution
 - how does DFS iterative deepening affect your answer