Knowledge-Based Agent

- an agent that
 - can form representations of the world
 - uses a process of inference to derive new representations of the world
 - uses the new representations to deduce what to do

Knowledge-Based Agents

- KB approach
 - aims to implement an agent that knows about its world and reasons about its possible courses of action
 - agent accepts new tasks in the form of explicit goals
 - can achieve competence by learning and updating knowledge

Knowledge-Based Agent

- central component - its knowledge base
 - representations of facts about the world
 - individual representation = sentence
 - sentence expressed in some Representation Language
- use TELL & ASK (relating to KB)
 - add new sentences
 - query what is known
- answer to ask should follow from what has been told
 - KB does not make up things as it goes

Knowledge-Based Agent

- maintains KB
 - may initially contain background knowledge
- when Agent program is called
 - it tells KB what it perceives (not the same as user telling the KB something)
 - asks the KB what action to perform
- uses logical reasoning to prove which action is better to answer query
- agent should then perform chosen action

Knowledge-Based Agent

- details of KRL and inference hidden in two functions
- Make-Percept-Sentence
 - takes percept and time
 - returns sentence - fact that the agent perceived the percept at a given time
- Make-Action-Query
 - takes time
 - returns sentence suitable for asking what action should be performed at that time

Knowledge-Based Agent

- design given is similar to agent with internal state
- because of definitions of Tell and Ask, a KB Agent is not a program for calculating actions based on internal state variables
Knowledge-Based Agent

- can be described at three levels
 - knowledge (epistemological) level
 - logical level
 - implementation level

Knowledge-Based Agent

- Knowledge Level (Epistemological Level)
 - most abstract
 - what the agent knows
 - know that Eyre Square is two way system
 - if Tell and Ask work correctly, then can work at this level

- Logical Level
 - knowledge is encoded into sentences
 - Oneway(EyreSquare)

Knowledge-Based Agent

- Implementation Level
 - level that runs on agents architecture
 - physical representations of sentences at logical level
 - sentence represented by string in list of strings
 - Oneway(EyreSquare) represented by the string
 - or by complex set of pointers connecting machine addresses corresponding to individual symbols
 - choice of implementation influences performance of agent

Representation, Reasoning, Logic

- basic elements of agent design
- Knowledge Representation
 - object is to express knowledge in computer tractable form
 - Consider syntax and semantics
- syntax
 - possible configurations that constitute sentences
 - usually, how sentences are represented on printed page
 - with agent, representation is inside computer
 - can think of electron pattern in memory

Representation

- semantics
 - determine facts in the world to which sentence refers
 - each sentence makes a claim
 - when a particular configuration exists, the agent believes the corresponding sentence
- example
 - syntax says if x and y are numbers, then X >=Y is a sentence about numbers
 - semantics says that X>=Y is false if Y is bigger than X

Representation

- if syntax and semantics defined precisely
 - language is a logic (broad interpretation)
- from syntax & semantics
 - derive an inference mechanism for Agent using that language
- how?
 - semantics - determine fact to which sentence refers
 - distinguish between facts and their representation
 - facts - part of the world
 - representation - encoded to be stored in the agent
Representation

- all reasoning mechanisms work on representation, not actual facts
- reasoning is a process of constructing new physical configurations from old ones
- proper reasoning should ensure that new configurations represent facts that actually follow from the facts that the old configurations represent

Representation

- example: From the facts
 - solar system obeys laws of gravitation
 - current arrangement of sun, planets and other bodies
- it follows Pluto will eventually spin off into the void
- agent could end with representation
 - Pluto arrives in Galway
- consider Monty Python & Holy Grail

Representation

- Entailment must be preserved
 - generate sentences that are necessarily true, given that old sentences are true
 - $KB \models \alpha$
- inference procedure can do 1 of 2 things
 - given KB, can generate new sentences α that purport to be entailed by KB
 - given KB & α, can report if α is entailed by KB

Representation

- inference procedure i can be described by the α it derives
 - Should be sound/truth preserving
- if i can derive α from KB, then write
 - $KB \vdash i \alpha$
 - α is derived from KB by i
 - record of operation of a sound i called a proof

Representation, Reasoning, Logic

- i is complete if
 - can find a proof for any entailed α (haystack)
- sound inference is desirable
 - key is to have inference steps respect semantics of α they operate upon
 - given a KB, inference steps should only derive new α that represent facts that follow from the facts represented by KB
- from semantics, can extract proof theory
 - specifies which reasoning steps are sound

Representation, Reasoning, Logic

- consider
 - $E = mc^2$
 - can show that a new sentence can be generated
 - $ET = mc^2T$
 - logical languages are like this
 - but they must deal with everything we might want to represent
 - not just numbers
Representation

• consider programming languages and natural languages

• PL
 – good for describing algorithms and data structures
 • use a 8x8 array to represent a chess board
 • World[2,2] ← Pawn – no problem
 • What about
 – “There is a pawn in some square”

Representation

• PL
 – completely describes state of computer and how it changes during execution
 – would like to support case where full information not available, only know some of the possibilities
 – PL not expressive enough

• NL
 – is expressive
 – meets communication rather than representation

Representation

– good way for someone to get to know something
– sharing of knowledge without explicit representation
 • Look!
 • Don’t want this to represent an exact piece of knowledge
– suffer from ambiguity (small cats and dogs)

• Good KRL
 – combine advantages of PL and NL
 – expressive and concise
 – unambiguous and context independent
 – effective, new inferences from sentences

Representation

• main ideas
 – how a precise formal language can represent knowledge
 – how mechanical procedures can act on expressions in that language to perform reasoning

 • the fundamental concepts remain the same no matter what language is used

Semantics

• in logic
 – meaning of α is what it states about the world
• how do we establish the meaning
 – the correspondence between sentence and fact
• usually up to the person who wrote the sentence
 – they provide an interpretation
 • a sentence does not mean something by itself
 • spies like us
• in practice, all KRL impose systematic relationship between α and fact

Semantics

• compositional
 – meaning of a sentence is function of the meaning of its parts
• once α is given interpretation by semantics
 – can be true or false
 – depends on interpretation and actual state of world

A sentence is true under a particular interpretation if the state of affairs it represents is the case
Inference

- any process by which conclusion is reached
- sound reasoning
 - logical inference or deduction
 - implements entailment between sentences
- necessarily true sentence
 - valid if and only if all possible interpretations in all possible worlds
 - “There is a stench in [1,1] or there is not a stench in [1,1]”

Inference

- “There is an open area in the square in front of me or there is a wall in the square in front of me”
 - only valid under the assumption that every square has either a wall or an open area in it
- satisfiable sentence
 - if and only if there is at least one possible world for which it is true
 - “there is a wumpus at [1,2]”
 - self-contradictory sentences are unsatisfiable

Inference in Computers

- computer suffers from 2 handicaps
 - does not necessarily know your interpretation for sentences
 - knows nothing about the world except what is in KB
 - is [2,2] ok
 - cannot reason informally, only use what is in KB
 - it must show that “if KB is true then [2,2] is OK” is valid

Inference in Computers

- formal inference is powerful
 - no limit to the complexity of the sentences it can handle
 - KB may be conjunction of 000s of sentences describing laws of gravity and current state of solar system
 - can be used to derive valid conclusions even when computer does not know the interpretation you are using
 - reports only valid conclusions

Validity and inference

- use truth table to test valid sentences
- one row for each possible combination of truth values for symbols
 - ((P ∨ H) ∧ ¬H) ⇒ P
- is this valid?
- If P=Wumpus in [3,1], H=Wumpus in [2,2]
 - learn (P ∨ H) and ¬H then what?

Validity and inference

- important point
 - if machine has some premises and a possible conclusion
 - it can test if conclusion is valid
 - build truth table
 - every row true, then conclusion is true
- computer has no access to world independently
 - inference procedure must work regardless
Models

- sentence true under particular interpretation
 - world is a model of that sentence under that interpretation
- back to entailment
 - \(\alpha \) is entailed if the models of KB are all models of \(\alpha \)
- may consider worlds unsuitable base for formal system
 - use models as mathematical objects (model = mapping)

Rules of inference

- inference rule
 - pattern of inference reoccurs
 - soundness shown once and for all
 - rule established, don’t need to use truth table to prove again
- notation \(\alpha \vdash \beta \) to say \(\beta \) is derived from \(\alpha \)
 - denotes inference rule - not sentence
 - if pattern above line is matched - premise true

7 Rules of Inference

- **Modus Ponens (Implication Elimination)**
 - from an implication and the premise of the implication, you can infer the conclusion
 \[
 \frac{\alpha \rightarrow \beta, \alpha}{\beta}
 \]

- **And Elimination**
 - from a conjunction, you can infer any of the conjuncts
 \[
 \frac{\alpha_1 \land \alpha_2 \land \ldots \land \alpha_n}{\alpha_i}
 \]

- **Double Negation elimination**
 - from a doubly negated sentence, you can infer a positive sentence
 \[
 \frac{\neg \neg \alpha}{\alpha}
 \]

- **Unit Resolution**
 - from a disjunction, if one of the disjuncts is false, you can infer the other to be true
 \[
 \frac{\alpha \lor \beta, \neg \beta \lor \gamma}{\alpha \lor \gamma}
 \]

- **Resolution**
 - because \(\beta \) cannot be both true and false, one of the other disjuncts must be true in one of the premises. OR implication is transitive
 \[
 \frac{\alpha \lor \beta, \neg \beta \lor \gamma}{\alpha \lor \gamma}
 \]
Rules of Inference

• inference rule is sound
 – conclusion is true in all cases where premises are true

• verify soundness by using a truth table
 – logical proof
 – sequence of applications of inference rules
 – start with sentences in KB
 – finish with sentence to prove

Agent for Wumpus World

• example for situation shown in Figure 6.4a

Wumpus Agent

– KB contains
 \[\neg S_{1,1}, \neg B_{1,1}, \neg S_{2,1} \rightarrow B_{3,1}, S_{1,2} \rightarrow \neg B_{1,2} \]

– Agent starts with rules

 • example,
 • R₁: \(\neg S_{1,1} \rightarrow \neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,1} \)
 • R₂: \(\neg S_{2,1} \rightarrow \neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,1} \land \neg W_{1,3} \)
 • R₃: \(\neg S_{1,2} \rightarrow \neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,1} \land \neg W_{1,3} \land \neg W_{2,2} \)

• another useful fact
 \[\neg S_{1,2} \rightarrow W_{1,2} \lor W_{2,2} \lor W_{1,1} \]

– given these sentences, deduce where the wumpus is

 – construct truth table for KB \(\Rightarrow W_{1,3} \) to show sentence is valid
 – 2¹² = 4096 rows in truth table
 – use inference rules
 – by elimination show \(W_{1,3} \) is true

Wumpus Agent

• 1 Apply Modus Ponens to \(\neg S_{1,1} \) and R1
 \[\neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,1} \]

• 2 Apply And Elimination
 \[\neg W_{1,1} \lor \neg W_{1,2} \lor \neg W_{2,1} \]

• 3 Apply Modus Ponens to \(\neg S_{2,1} \) and R2
 then apply And Eliminations to get
 \[\neg W_{2,2} \land \neg W_{1,3} \land \neg W_{1,1} \]

• 4 Apply Modus Ponens to \(S_{1,2} \) and R4
 \[W_{1,3} \lor W_{1,2} \lor W_{2,2} \lor W_{1,1} \]

• 5 Apply Unit Resolution
 \[\alpha is W_{1,3} \lor W_{1,2} \lor W_{2,2} and \ beta is W_{1,3} \]
 \[get W_{1,3} \lor W_{1,2} \]

• 6 Apply unit resolution
 \[\alpha is W_{1,3} \lor W_{1,2} and \ beta is W_{2,2} \]
 \[W_{1,3} \lor W_{1,2} \]

• 7 one more resolution
 \[\alpha is W_{1,3} and \ beta is W_{1,2} \]
 \[get W_{1,3} \]
Knowledge into Action

- propositional logic
 - infer knowledge - where is wumpus
 - only useful if it helps Agent act
- need additional rules
 - relate to current state of world to actions to take
 - $A[1,1] \wedge \text{East}[A] \wedge W[2,1] \Rightarrow \neg\text{Forward}$

Problems with Agent

- number of propositions
- using current notation, to state
 - don’t go forward if agent in front of you
 - requires 64 rules (16 squares x 4 directions)
- large number of rules slows agent down
- taxing to set out all rules
- agent moves - world changes
 - $A[1,1] \text{ false } A[1,2] \text{ true }$
 - may not be able to forget $A[1,1]$

- if Agent is to remember
 - need different propositional symbols for each location
- difficulties
 - how long is game
 - have to write time dependent versions of each rule
- Main Problem
 - only one representational device - proposition
 - 100 steps requires 6400 rules
- first order logic (objects and relations)