Case-Based Reasoning

• case used to store description of past experience
• problem encountered and its proposed solution
• may represent a single past case or a generalisation of several single cases
• Case-based reasoning is not the first artificial intelligence method to combine reasoning and learning

Case-Based Reasoning

• contextualised piece of knowledge which teaches the reasoner a lesson
• some areas of artificial intelligence
 – effort first goes into developing a model of how a thought or decision-making processes works
 – then, that model is generally applied to all problem situations involving that particular process
 – the knowledge in the model will be general knowledge

Case-Based Reasoning

• contextualised piece of knowledge which teaches the reasoner a lesson
• some areas of artificial intelligence
 – effort first goes into developing a model of how a thought or decision-making processes works
 – then, that model is generally applied to all problem situations involving that particular process
 – the knowledge in the model will be general knowledge

Case-Based Reasoning

• contextualised piece of knowledge which teaches the reasoner a lesson
• some areas of artificial intelligence
 – effort first goes into developing a model of how a thought or decision-making processes works
 – then, that model is generally applied to all problem situations involving that particular process
 – the knowledge in the model will be general knowledge

Case-Based Reasoning

• contextualised piece of knowledge which teaches the reasoner a lesson
• some areas of artificial intelligence
 – effort first goes into developing a model of how a thought or decision-making processes works
 – then, that model is generally applied to all problem situations involving that particular process
 – the knowledge in the model will be general knowledge

Case-Based Reasoning

• general knowledge
 – advantage of economy of storage
 – allows to deal with uncertainty using statistical models
 – disadvantage of difficulty when trying to apply general rules to something specific
 – doesn’t tell us about situations that deviate from the norm

Case-Based Reasoning

• general knowledge
 – advantage of economy of storage
 – allows to deal with uncertainty using statistical models
 – disadvantage of difficulty when trying to apply general rules to something specific
 – doesn’t tell us about situations that deviate from the norm

Case-Based Reasoning

• general knowledge
 – advantage of economy of storage
 – allows to deal with uncertainty using statistical models
 – disadvantage of difficulty when trying to apply general rules to something specific
 – doesn’t tell us about situations that deviate from the norm

Case-Based Reasoning

• A Aamodt (1989) paper “Towards Expert Systems that learn from experience”
 – case features categorised as necessary, characteristic, non-characteristic and irrelevant
• K Sycara (1989) “Index Transformation and generation for case retrieval”
 – consider structural features, a functional description, causal explanation of behaviour and qualitative states

Case-Based Reasoning

• A Aamodt (1989) paper “Towards Expert Systems that learn from experience”
 – case features categorised as necessary, characteristic, non-characteristic and irrelevant
• K Sycara (1989) “Index Transformation and generation for case retrieval”
 – consider structural features, a functional description, causal explanation of behaviour and qualitative states

Case-Based Reasoning

• A Aamodt (1989) paper “Towards Expert Systems that learn from experience”
 – case features categorised as necessary, characteristic, non-characteristic and irrelevant
• K Sycara (1989) “Index Transformation and generation for case retrieval”
 – consider structural features, a functional description, causal explanation of behaviour and qualitative states

Case-Based Reasoning

• Delaney, Cunningham, Coyle (2004) paper “An Assessment of Case-Based Reasoning for Spam Filtering”
 – The case base can be updated continuously and new training data is immediately available
• McSherry (2004) paper “Maximally Successful Relaxations of Unsuccessful Queries”
 – Presents a mixed initiative approach to recovery from the retrieval failures that occur when there is no case that satisfies all requirements
Case-Based Reasoning

- According to a 1989 panel on CBR, some important questions to ask about case representation include:
 - to what extent should cases be generalised as they are stored?
 - What argument is there for maintaining the distinctness of cases that appear similar?
 - Are cases monolithic structures that are applied individually or are they loosely connected sets of events that are reconstructed at retrieval time?

Case-Based Reasoning

- if dependency structure and causal annotation appear in case representation at all, when should the relevant information be acquired?
 - at storage time, time of modification, use
- CBR has been implemented in many forms
 - decision support systems
 - groups of co-operating application processes sharing information in OO database
 - can be used to support people in tasks

Case-Based Reasoning

- PERSUADER
 - knowledge based system used to model the dynamics of negotiation
 - input is goals of each side and the dispute context
 - CBR generates initial settlement, persuasive arguments and improving rejected proposal
 - responses of negotiating parties will lead to further transformation of solution

Case-Based Reasoning

- ECUE
 - E-mail Classification Using Examples
 - A lazy learning system using CBR
 - Lazy Learning -- the decision of how to generalise beyond training data is deferred until each new unseen instance is considered.

Expert Systems

- developed as specialised problem solvers that emphasised the use of knowledge
 - medical diagnosis
 - mineral prospecting
- designed to reason through knowledge
 - solve problems using methods that humans use
- use heuristic knowledge rather than number to control the process of problem solving

Expert Systems

- have their knowledge encoded and maintained separately from computer program which uses the knowledge
- capable of explaining how a particular conclusion is reached
- use symbolic representation for knowledge
- perform inference through symbolic computations
 - closely resemble manipulations of natural language
Expert Systems

- knowledge engineer extracts knowledge from expert and places it in the knowledge base
- knowledge engineer develops the inference engine
 - sorts through the knowledge in organised manner
- components in expert system
 - knowledge base

Expert Systems

- inference engine
- working memory
 - store user’s input, some rules and other pertinent facts
- I/O interface
- explanation module
 - true expert systems are capable of explaining what they are doing at any point in the process
- editor
 - add or change rules and knowledge base

Expert Systems

- learning module
 - some expert systems can include learning module
 - not common
- each rule in the knowledge base represents small part of knowledge in the domain of expertise
- weaknesses
 - don’t perform well with large number of rules or large search spaces

Expert Systems

- methods developed to cope with this include reasoning by elimination, abstraction, multiple lines of reasoning and least commitment principle
 - elimination
 - discard rules that do not lead to solution or lead to solution of low plausibility
 - abstraction
 - break the problem into sub problems, sub sub problems etc
 - then solve lowest level and work upwards

Expert Systems

- uses guessing when impossible to determine which is the best rule to select at given point
 - if it proves wrong, it must be able to recognise this and try to recover
- multiple lines of reasoning
 - view the problem from different perspectives
 - try to solve and compare solutions
- weaknesses
 - do not present uncertainties very well
 - knowledge may be incomplete, unreliable, imprecise or vague

Expert Systems

- ES tries to take account of quality of knowledge
 - can use probability theory or incidence calculus to deal with uncertainty
 - often make use of commercially available Expert System Shells of which criticisms include
 - not always capable of versatile searching
 - some do not handle uncertainty well
 - some crunch through large collections of data and handle a few simple rules
Expert Systems

- others handle large collections of complex rules, but do not perform well when accessing data
 - many do not learn
 - makes them obsolete within short time of development
 - if needed in foreseeable future, will require maintenance of knowledge base and rest of system
- receives input describing problem in field of expertise
 - uses its inference to extract appropriate information from its KB to produce an answer

Expert Systems

- because expert systems are highly specialised, static systems, they can be extremely brittle when presented with novel problems or situations.
- Expert system shells are environments for creating expert systems
 - wide variety of expert system shells are commercially available, tend to be very expensive.

Expert System Shells

- CLIPS, a shell developed by NASA and written in ANSI C, is available for free at:
 - http://www.ghgcorp.com/clips/download/
- CLIPS
 - complete environment for developing ES
 - C Language Integrated Production System
 - shell - portion of CLIPS which performs inference
 - provides the basic elements of expert system
 - fact list & instance list - global memory for data

Expert System Shells

- knowledge base - provides all the rules
- inference engine - controls overall execution of rules
- program may consist of rules, facts and objects
- CLIPS applications
 - ES for wheelchair selection
 - for people with MS
 - involves examination of number of characteristics
 - ambulation status
 - length of diagnosis

Expert System Shells

- funding sources
- few experts so system developed to aid in process
 - from the therapist’s standpoint
 - environments
 - transport of wheelchair
 - distance to be traversed
 - caregiver status
 - current wheelchairs (consider modification)
 - from the patient’s standpoint
 - cost

Expert System Shells

- Insurance
- Mobility and comfort
- Image
- have Patient database, patient’s needs and constraints
- wheelchair database
- conduct search to provide solution set and explanation
- 3rd Conference on Clips (website)